http://www.abbs.info e-mail:[email protected]

ISSN 0582-9879                             ACTA BIOCHIMICA et BIOPHYSICA SINICA 2003, 35(6): 529-535                             CN 31-1300/Q

Establishment of a SCID Mouse Model for Synergistic Anti-tumor Effect of Human IL-12 and B7-1

GAO Jun*, ZHAO Ping1, CHEN Xiou-Hua2, LI Mao, LONG Jian-Qiou, GU Ai-Mei, WU Xiao-Lan, CAO Guang-Wen1, QI Zhong-Tian1

( Division of Epidemiology, Institute of Naval Medicine, Shanghai 200433, China; 1Second Military Medical University, Shanghai 200433, China; 2Department of Pharmacology, Shanghai Institute of Pharmaceutical Industrial, Shanghai 200040, China )

 

Abstract        Human IL-12(hIL-12) has weak effect on mouse immunity cells, so the practical animal model is not available for the study of hIL-12 anti-tumor activity. In this work, the improved Winn assay was applied to evaluate the synergistic anti-tumor effects of hIL-12 and human costimulatory molecule B7-1(hB7-1) on human tumor in HuPBL-SCID mouse model. Three gene transferring solutionshIL-12, hB7-1 and their mixture(1:1) were prepared using the nonliposome transgene reagent and the expressing vectors, and hIL-12, hB7-1 or their mixture were transferred into tumor cell A375 respectively. Then A375 were co-injected into SCID mice with HuPBL, and rhIL-2 were injected i.p. as an anti-tumor agitator. On the other hand, LoVo and SPC tumor cells were also used to test the inhibitory effect of the mixture of hIL-12 and hB7-1. The anti-tumor effect of transferred genes was estimated by detecting tumor inhibition rate. Furthermore, the histochemical change of A375 implanting tumor tissue was also observed. Results showed that, to A375, the tumor inhibition rate of hIL-12, hB7-1, or their mixture were 74.06%, 66.98%, and 93.40%, respectively (P<0.01); and the mixture showed a good synergistic effect according to the Webb's fraction multiplication law. The tumor inhibition rate of the mixture in LoVo and SPC implanted mice were 98.37% and 97.39% respectively, also showing a good synergistic effect. Histochemical study in A375 implanted mice showed that in gene transfected mice, tumor cells were greatly inhibited and fully intruded by HuPBL cells; while in control group, tumor cells grew very well and HuPBL showed a conglomeration. At last, the human IgG and T cells in PBL of HuPBL-SCID mice were higher than non-HuPBL-SCID mice implanted A375; which showed that HuPBL-SCID mice could be applied for the evaluation of the anti-tumor effect of human IL-12 and B7-1. All data indicated that the combination of hIL-12 and hB7-1 gene might be a promising approach for in vivo cancer therapy.

 

Key words     tumor; hIL-12; hB7-1; HuPBL-SCID mice; gene therapy

 

Received: December 30, 2002       Accepted: March 7, 2003

This work was supported by the grants from the National Natural Science Foundation of China (No. 39600172, No. 30171055)

*Corresponding author: Tel, 86-21-25067154; e-mail, [email protected]

 

IL-12B7-1基因对HuPBL-SCID小鼠模型中人源肿瘤的协同抑制作用

高军* 赵平1 陈秀华2 李茂 龙建秋 谷爱梅 吴晓兰 曹广文1 戚中田1

海军医学研究所流行病学研究室, 上海200433 1第二军医大学微生物学教研室, 上海 200433 2上海市医药工业研究院药理研究室, 上海 200040

 

摘要       IL-12hIL-12)对鼠源的免疫细胞作用较弱, 进行hIL-12抗瘤研究缺乏有效的动物模型。 为此利用荷人瘤的HuPBL-SCID小鼠模型, 将改良的Winn assay细胞免疫功能分析方法应用于评价hIL-12hB-1协同抗瘤作用。 用商业化的非脂质转基因试剂配制单独的hIL-12hB7-1hIL-12联合hB7-1的基因转染液。 将上述三种基因转染液分别瞬时转基因入人恶性黑色素瘤A375细胞, 转基因30 min后, 按组别(hIL-12组、hB7-1组、hIL-12+hB7-1组、rhIL-2对照组、HuPBL对照组和肿瘤对照组)同人外周血淋巴细胞混合接种于SCID小鼠皮下, 20天后处死实验小鼠, 测得hIL-12hB7-1的抑瘤率分别为74.06%66.98% 联合作用达93.40% rhIL-2HuPBL对照组无抗瘤作用。 同时, 在此模型上hIL-12联合hB7-1基因对人大肠癌LoVo和人肺癌SPC的抑制率分别为98.37%97.39% 实验建立的各组HuPBL-SCID小鼠20天的外周血都含有人IgG>0.5 mg/L)和极少量人CD3+淋巴细胞(>0.5/100个有核细胞) hIL-12hB7-1hIL-12+hB7-1组的瘤灶内人淋巴细胞浸润生长, 肿瘤细胞残存, rhIL-2HuPBL对照组的瘤灶内人淋巴细胞“似团样”生长, 肿瘤生长旺盛。 表明此HuPBL-SCID小鼠模型上的抗瘤机制为局部免疫反应。 结果表明以此动物模型可跨越种属差异造成的实验障碍, 证明了hIL-12hB7-1联合应用在HuPBL-SCID小鼠模型中具有显著的协同抗瘤效果。

 

关键词   肿瘤; hIL-12 hB7-1 HuPBL-SCID小鼠; 基因治疗

 

人白细胞介素12hIL-12)是由一个二硫键连接的异二聚体分子, 主要由活化的B细胞、激活的单核细胞、树突状细胞等抗原提呈细胞(APC)分泌。 重组的IL-12(rIL-12)在动物实验和Ⅰ期临床试验中抗瘤作用明显, 但Ⅱ期临床试验中显示了消化道出血、哮喘和肝功能受损等副作用。 有分析认为是由于注射给药使得循环血液中IFN-γ升高所致。 预注射一次IL-12可降低全身的副作用, 但可能也降低IL-12的抗瘤效果, 同时给临床应用安全也带来问题[1] 应用IL-12进行肿瘤局部的基因治疗可使治疗部位IL-12浓度升高, 诱发局部IFN-γ的升高, 激发原位识别和杀伤肿瘤的免疫反应, 又可大大降低IL-12的全身副作用。 人共刺激分子B7-1hB7-1)一般存在于活化的B细胞、激活的单核细胞、树突状细胞等APC细胞表面。 APC细胞活化T细胞过程中, B7-1T细胞表面的CD28结合可作为第二刺激信号协同激活T细胞。 IL-12B7-1基因治疗肿瘤均已获准临床实验, 但目前研究结果表明疗效均有待提高[2] 另外还没有见到有关两个基因联合治疗应用的临床研究报道, 而较多动物实验结果表明两者联合应用具有协同抗瘤作用, 显示了更好的临床应用前景[3,4]

hIL-12对鼠类作用较弱, 评价IL-12B7-1协同抗肿瘤的研究多为鼠的IL-12和人/鼠的B7-1治疗鼠源肿瘤, 缺乏hIL-12对人肿瘤的疗效评价。 实验中采用改良的分析细胞免疫功能的Winn assay方法[5,6] 将人外周血淋巴细胞(HuPBL)与瞬时转基因的人肿瘤细胞混合接种于联合免疫缺陷症(SCID)小鼠皮下, 即建立HuPBL-SCID小鼠模型, 在较为全面地分析了hIL-12hB7-1基因单独作用和联合作用抗人黑色素瘤A375的效果及免疫抗瘤机制后, 又以此动物模型评价了hIL-12hB7-1联合转基因协同抗人大肠癌LoVo和人肺癌SPC的效果, 为此治疗方案提供更为接近临床的实验依据。

 

1    材料和方法(Materials and Methods

1.1   材料

hIL-12 p40p35片段和hB7-1 cDNA由海军医学研究所流行病学研究室从上海地区人骨髓有核细胞中克隆获得, 以真核表达载体pCI(购于Promega公司)为骨架, 分别构建了表达hIL-12hB7-1的质粒pCI-hIL-12pCI-hB7-1[7] 其中连接p40p35的内核糖体进入位点序列(IRES)由第二军医大学微生物教研室自备, 载体基因结构见图1。 测定hIL-12ELISA试剂盒购自Bender公司; 抗人CD3hB7-1分子的流式专用荧光抗体购自Caltag公司; 细胞因子rhIL-2购自Endoeng公司; 非脂质转染试剂(effectene transfection reagent)和抽提质粒DNA试剂盒购自Qiagen公司。 裸鼠传代的人黑色素瘤细胞株A375由上海医药工业研究院提供; 裸鼠传代的人大肠癌LoVo和人肺癌SPC瘤株及SCID小鼠(沪动合证字133号)购自上海肿瘤研究所, SCID小鼠雌雄不拘, 平均体重为(17.8±0.5) g 实验动物操作和喂养委托上海医药工业研究院完成。

 

Fig.1The structure of pCI-hIL-12 and pCI-hB7-1

 

1.2   转基因制剂的配制

按说明书操作, 采用Effectene(μL)Enhancer(μL)DNA(μg)=1381比例, pCI-hIL-12配制hIL-12的转染液, pCI-hB7-1配制hB7-1转染液, 联合应用两者(11)配制联合转染液。 用试剂盒指定具体缓冲液调整DNA浓度, 单基因转染组为6 mg/L 联合组为12 mg/L 同时, 按配制转染液时所用试剂的浓度, 但不加入表达载体DNA 配制用于动物实验对照的单纯转染液。

1.3   转基因制剂的体外转染和直接细胞毒性观察

将人黑色素瘤细胞株A375体外培养传代稳定后, 1×106个/孔的细胞密度铺于36 mm直径的六孔板。 设三组: pCI-hIL-12的转染组、pCI-hB7-1转染组和联合转染组, 1.2中配制的三种基因转染液167 μL/孔对应各组分别转基因(按说明书操作), 72 h后用ELISA测定细胞培养上清液IL-12含量, 同时分别取各组细胞0.5×106个, 加入FITC标记的抗人CD80抗体0.5 μg 按常规方法用流式细胞仪(Coulter EPICS XL)检测表达B7-1的细胞表达率。 另在一平行实验中, 细胞转基因后不更换培养基, 持续培养10天后镜检观察细胞的生长状况, 测定转染液对细胞的毒性反应。

1.4   抗瘤效率的实验检测

1.4.1       抗人黑色素瘤A375 的动物实验        30SCID小鼠分为六组: (1) pCI-hIL-12+pCI-hB7-1组(pCI-hIL-12+pCI-hB7-1+rhIL-2+HuPBL+A375); (2) pCI-hIL-12组(pCI-hIL-12+rhIL-2+HuPBL+A375); (3) pCI-hB7-1组(pCI-hB7-1+rhIL-2+HuPBL+A375); 4rhIL-2对照组(rhIL-2+HuPBL+A375); (5)HuPBL对照组(HuPBL+A375)和(6)A375对照组(A375细胞)。 取生长良好的SCID小鼠传代的A375瘤块, 用生理盐水制备A375细胞悬液。 同时, 取健康献血员200 mL鲜血, 以淋巴细胞分离液常规分离制备HuPBL 2×106A375细胞分别与0.1 mL三种新配制的转染液混合, 37 °C培育30 min后, 再与1.5×107HuPBL悬液混合, 按组别每只小鼠腋皮下接种0.2 mL 接种日起除HuPBL对照组和A375对照组外, 另四组实验小鼠均隔日腹腔注射rhIL-2 500 u/只, 10次。 接种20天后快速脱颈处死实验动物。

1.4.2       抗人大肠癌LoVo及人肺癌SPC的动物实验     转基因策略对这两种肿瘤的抗瘤作用的评价分别用24SCID小鼠。 各为四组: pCI-hIL-12+pCI-hB7-1组(pCI-hIL-12+pCI-hB7-1+rhIL-2+HuPBL+肿瘤细胞)、转染液对照组(单纯转染液+肿瘤细胞)、HuPBL对照组(HuPBL+肿瘤细胞)和肿瘤细胞对照组。 肿瘤细胞分别为LoVoSPC 只有pCI-hIL-12+pCI-hB7-1组注射rhIL-2 淋巴细胞的制备、瞬时转基因及肿瘤细胞接种等均同前A375的操作, 接种25天后脱颈处死动物。

1.4.3       抗瘤效果评价方法       每周用游标卡尺测肿瘤大小二次。 实验小鼠处死后, 瘤块称重, HE染色病理分析, 抗人CD3抗体组化染色人淋巴细胞。 根据公式(1) 2)、 (3)计算相关实验数据。 协同效应根据Webb氏分数乘积法计算判定见统计学处理见公式(3)

                                                                                                                            (1)

V 肿瘤体积; a 瘤块长径; b 瘤块短径

 

抑瘤率(%=[(肿瘤对照组平均瘤重-给药组平均瘤重)/肿瘤对照组平均瘤重]×100%         (2)

 

1.4.4       HuPBL-SCID小鼠模型的有效性分析        A375实验小鼠眼球取血, ELISA法测定血浆中人免疫球蛋白的含量。 之后将各实验小鼠血细胞组内合并, 涂片镜检淋巴细胞数, 并用流式细胞仪检测人CD3+T细胞数。

1.5   统计学处理

实验数据经过正态性及方差齐性检验后, Dunnett-t检验处理各实验组同对照组之间的均数差别, 设双向检验水准α=0.01 判定各实验组与对照组的统计差异。 协同作用的判定依据Webb氏分数乘积算法[8][公式(3)]

 

(fa)1,2 =1[1(fa)1 ][1(fa)2 ]                                                                                           (3)

(fa)1(fa)2分别为实验测定的两种疗法的抑瘤率, (fa)1,2为两种疗法叠加效应的理论计算值, 如果合并应用两种疗法的实验测定值大于理论计算值, 则表示具有协同作用。

 

 

2结果(Results

2.1   转染液的体外转染A375效率评价和直接细胞毒性观察

hIL-12hB7-1hIL-12+hB7-1三种转染液分别转染A375细胞72 h后, ELISA检测hIL-12的表达量(单位: μg/L 106个细胞的72 h培养上清液中所含的蛋白质的浓度)分别为1.2±0.06、低于检测阈、1.1±0.08 流式细胞仪分析hB7-1的细胞表达率分别为1.01%56.60%61.80% 相对荧光强度分别为2.192.843.01 结果表明配制的转染液具有高效的转基因作用, 并且pCI-hIL-12pCI-hB7-1两载体联合应用互不影响各自的转染能力。

细胞毒性实验结果判定依靠镜检细胞生长状况, 比较含转染液培养基与常规培养基培育的细胞生长状况差异。 观察发现两者在培养10天的过程中, 无对比差异。 表明转染液无直接细胞毒作用。

2.2   转基因的抗瘤效果

2.2.1       转基因抗人黑色素瘤A375         各组转基因处理的人体黑色素瘤A375细胞同HuPBL混合接种SCID小鼠皮下后, 014天间, 肿瘤生长不明显, 各组无显著差异。 1420天间, 各组肿瘤生长出现明显差异。 20 天各组肿瘤的平均体积(mm3): (1) pCI-hIL-12+pCI-hB7-1组为44.1±43.3 (2) pCI-hIL-12组为575.5±671.1 (3) pCI-hB7-1组为651.4±786.6 4rhIL-2对照组为1964.0±610.7 (5)HuPBL对照组为1726.6±459.2 (6)A375对照组为1849.0±414.4 肿瘤体积动态差别见图2(A) 快速处死动物后分离肿瘤组织, 测得平均瘤重(g) (1) pCI-hIL-12+pCI-hB7-1组为0.28±0.18 (2) pCI-hIL-12组为1.10±1.26 (3) pCI-hB7-1组为1.40±1.33 4rhIL-2对照组为4.60±0.88 (5)HuPBL对照组为4.12±1.17 (6)A375对照组为4.24±0.94 瘤重差别的统计分析见图3A)。 依瘤重计算获得: hIL-12hB7-1转基因对移植于SCID小鼠的人体黑色素瘤A375的抑瘤率分别为74.06%66.98% hIL-12+hB7-1联合转基因的抑瘤率达93.40% hIL-12hB7-1二者两种疗法叠加效应的理论计算值根据公式(3)计算得到为91.43% 而本试验hIL-12+hB7-1联合应用的实际抑瘤率大于计算的理论相加值, 表明二者能协同抗瘤。

 

Fig.2       The curve of tumor growth in HuPBL-SCID

2×106 tumor cells transfected and followed mixture with 1.5×107 HuPBL were implanted into a SCID mouse subcutaneous. The volume of tumors was measured every 2 days. (A) A375 ( n=5); (B) LoVo (n=6); (C) SPC (n=6).

 

Fig.3       The effect of hIL-12 and hB7-1 on the weight of tumor A375, LoVo, SPC inducing by the implanting of A375, LoVo, SPC respectively

Mice were injected s.c. with 1.5×107HuPBLs and with 2×106 tumor cells modified by hIL-12, hB7-1, hIL-12 and hB7-1 genes. The average weight of tumors was calculated after they were quickly sacrificed. (A) The mice were injected with A375 tumor cells modified by different genes, followed by i.p. inoculation of rhIL-2 (500 u per SCID mouse) every other day except the group 5 and 6, then sacrificed after 20 d. 1, pCI-hIL-12+pCI-hB7-1+rhIL-2+HuPBL+A375 group; 2, pCI-hIL-12+rhIL-2+HuPBL+A375 group; 3, pCI-hB7-1+rhIL-2+HuPBL+A375 group; 4, rhIL-2+HuPBL+A375 control; 5, HuPBL+A375 control; 6, A375 control. (B) The mice were injected with LoVo or SPC tumor cells. The mice in group 1 were transfected by hIL-12 and hB7-1 genes, and followed by i.p. inoculation of rhIL-2 (500 u per SCID mouse) every other day , then sacrificed after 25 d. The other groups were different controls. 1, pCI-hIL-12+pCI-hB7-1+rhIL-2+HuPBL +LoVo or +SPC group; 2, blank transferring solutions without genes hIL-12 and hB7-1 +LoVo or +SPC control; 3, HuPBL +LoVo or +SPC control; 4, LoVo or SPC control. *[KG-*3P<0.01 vs. control. #P<0.01 vs. hIL-12 alone or hB7-1 alone.

 

2.2.2       转基因抗人大肠癌LoVo或肺癌SPC         各组转基因处理的人体大肠癌LoVo和肺癌SPC细胞同HuPBL混合接种SCID小鼠皮下后, 014天间, 肿瘤生长不明显, 各组无显著差异。 1425天间, 各组肿瘤生长出现明显差异。 人体大肠癌LoVo25天的各组肿瘤平均体积(mm3): (1) pCI-hIL-12+pCI-hB7-1组为0.33±0.26 (2) 转染液对照组为1381.0±450.6 (3) HuPBL对照组为2889.7±831.7 (4) 肿瘤细胞对照组为2632.8±1065.1 人体肺癌SPC25天的各组肿瘤平均体积: (1) pCI-hIL-12+pCI-hB7-1组为0.50±0.00 (2) 转染液对照组为701.9±243.7 (3) HuPBL对照组为1325.2±713.4 (4) 肿瘤细胞对照组为1229.4±474.9 肿瘤体积差异分别见图2(B)2(C) 处死动物后分离肿瘤组织, 测得人体大肠癌LoVo的平均瘤重(g) (1) pCI-hIL-12+pCI-hB7-1组为0.05±0.00 (2) 转染液对照组为3.00±0.57 (3) HuPBL对照组为2.92±0.39 (4) 肿瘤细胞对照组为3.07±0.73 测得人体肺癌SPC的平均瘤重(g) (1) pCI-hIL-12+pCI-hB7-1组为0.05±0.00 (2) 转染液对照组为1.92±0.18 (3) HuPBL对照组为1.97±0.22 (4) 肿瘤细胞对照组为1.92±0.19 瘤重差别的统计分析见图3(B) 依瘤重计算获得: hIL-12+hB7-1联合转基因对人体大肠癌LoVo和肺癌SPC的抑瘤率分别为98.37%97.39% LoVo实验小鼠及肿瘤照片见图4

Fig.4       The HuPBL- SCID mice implanted with LoVo (A) and their corresponding tumors (B)

1, pCI-hIL-12+pCI-hB7-1+rhIL-2+HuPBL+LoVo group; 2, transferring solutions without pCI-hIL-12 or pCI-hB7-1 +LoVo control; 3, HuPBL +LoVo control; 4, LoVo control.

 

2.3   肿瘤组织病理分析和人淋巴细胞组化染色

从人黑色素瘤A375实验肿瘤组织的HE染色切片可见: hIL-12hB7-1hIL-12+hB7-1的瘤灶内人淋巴细胞浸润生长, 肿瘤细胞只有部分残存[5A] hIL-2HuPBL对照组的瘤灶内人淋巴细胞似“团样”生长, 与生长旺盛的肿瘤细胞分界明显[5B] 从抗人CD3抗体组化染色切片可见: 转基因治疗组瘤灶内浸润的淋巴细胞多数为人CD3+T细胞[5C]

 

Fig.5       HE and immunohistochemical staining of the tumor tissue in A375 experiment

(A) HE staining of the tumor tissues in pCI-hIL-12+pCI-hB7-1+rhIL-2+HuPBL+A375 group or pCI-hIL-12+rhIL-2+HuPBL+A375 group or pCI-hB7-1+rhIL-2+HuPBL+A375 group. The arrow indicates many lymphocytes infiltrate into the tumors (100×). (B) HE staining of tumor tissues in rhIL-2+HuPBL+A375 or HuPBL+A375 control. The arrows indicate some lymphocytes like 'a small mass' grow separately in the tumors (40×). (C) Immunohistochemical staining of the tumor tissues using human CD3 monoclonal antibody in pCI-hIL-12+pCI-hB7-1+rhIL-2+HuPBL+A375 group or pCI-hIL-12+rhIL-2+HuPBL+A375 group or pCI-hB7-1+rhIL-2+HuPBL+A375 group. The arrows indicate human T lymphocytes exist in the tumors (400×).

 

2.4   HuPBLs-SCID小鼠模型有效性分析

对人体黑色素瘤A375实验小鼠的免疫球蛋白含量进行测定。 结果发现本实验建立的HuPBL-SCID小鼠外周血均含有一定量的人IgG蛋白(图6), 外周血镜检结果发现100个有核细胞中可见0.52个淋巴细胞。 用荧光标记的抗人CD3抗体染色流式细胞仪检测发现HuPBL-SCID小鼠外周血均有极少量人CD3+细胞存在(图7)。 统计结果显示上述检测指标各组HuPBL-SCID动物之间无统计学差异; 但同A375肿瘤对照组之间均存在显著差异(P<0.01 n=5)。 这些结果表明, 本研究建立的HuPBL-SCID小鼠模型体内存在一定程度的人免疫反应。

 

Fig.6       Human IgG in the peripheral blood of SCID mice in A375 experiment