Biological Activities of Purified Harpin \(_{\text{Xoo}}\) and Harpin \(_{\text{Xoo}}\) Detection in Transgenic Plants Using Its Polyclonal Antibody

Ming LI, Min SHAO, Xu-Zhong LU, and Jin-Sheng WANG*

Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

Abstract Many harpins have been found in plant pathogen bacteria that can elicit disease and insect resistance in plants, and promote plant growth. In this work, we overexpressed and purified \(Xanthomonas oryzae\) \(pv\), \(oryzae\) harpin, harpin \(_{\text{Xoo}}\), in \(Escherichia coli\) BL21/pGEX-hpa1. Harpin \(_{\text{Xoo}}\) was fused to the C-terminus of glutathione S-transferase (GST) and purified using the Bulk GST purification module and thrombin cleavage capture kit. Purified harpin \(_{\text{Xoo}}\) protein was sensitive to protease K and stable to heat treatment, and could not induce a hypersensitive response after treatment with various plant metabolic inhibitors; these characteristics were similar to harpin \(_{\text{Ea}}\) of \(Erwinia amylovora\). The purified harpin \(_{\text{Xoo}}\) showed a similar ability to induce tobacco mosaic virus resistance in tobacco as harpin \(_{\text{Ea}}\). Its antibody worked well in detecting the purified harpin \(_{\text{Xoo}}\), harpin \(_{\text{Xoo}}\) in the total protein of \(E. coli\) BL21/pGEX-hpa1 and an \(hpa1\) transgenic rice.

Key words harpin \(_{\text{Xoo}}\); glutathione S-transferase (GST); biological activity; polyclonal antibody

Received: April 8, 2005 Accepted: August 5, 2005

This work was supported by the grants from the Major State Basic Research Development Program of China (No. 2003CB114204) and the National Natural Science Foundation of China (No. 30230240)

*Corresponding author: Tel/Fax, 86-25-84399072; E-mail, wangjsh@njau.edu.cn

DOI: 10.1111/j.1745-7270.2005.00096.x
The glutathione S-transferase (GST) gene fusion system is a simple and fast technique to express and purify proteins [21]. This technique needs few apparatus and obtains abundant purified protein in two days.

In this work, we purified harpin\textsubscript{Xoo} using the GST gene fusion system, studied its characteristics, and reported its detection in transgenic rice plants by polyclonal antibody.

Experimental Procedures

The gene \textit{hpa1} was amplified from \textit{X. oryzae pv. oryzae} strain JxoIII genomic DNA by a standard polymerase chain reaction (PCR). The primers were 5'-TTCGGATCCAT-GAATTCCTTTGAACACACAA-3' (forward, BamHI site is in italic) and 5'-GGTGAATTCTTACTGACATCGAT-GGCT-3' (reverse, EcoRI site is in italic). PCR amplifications were performed for one cycle of 5 min at 95 °C; 35 cycles of 45 s at 95 °C, 45 s at 56 °C, 45 s at 72 °C; and a final extension step of 7 min at 72 °C. The PCR product was cloned into pGEM-T easy vector (Promega, Madison, USA), a high copy T vector. The positive insertion was confirmed by the automated DNA sequencing in TaKaRa (Dalian, China). The recombinant vector containing \textit{hpa1} (pGEM-hpa1) was digested with \textit{Bam}HI and \textit{Eco}RI, then ligated into pGEX-2T vector (Pharmacia, Uppsala, Sweden) digested with the same enzymes. The recombinant plasmid pGEX-hpa1 was transformed into \textit{E. coli} BL21 (DE3) (Pharmacia), and the resulting strain was named \textit{E. coli} BL21/pGEX-hpa1.

Ten microliters of glycerol stock of \textit{E. coli} BL21/pGEX-hpa1 was inoculated into 1 ml of 2×YT medium supplemented with 100 µg/ml ampicillin. After 6 h incubation at 37 °C, 100 µl culture was inoculated into 10 ml of 2×YT medium and incubated overnight at 37 °C under the same conditions. The culture was diluted at 1:100 in fresh 2×YT medium with 100 µg/ml ampicillin and incubated at 37 °C. When the \textit{A}₆₀₀ reached 0.6–0.8, 0.1 mM isopropyl-\(\beta\)-D-1-thiogalactopyranoside (IPTG) was added, and the mixture was incubated for additional 4 h at 28 °C or 37 °C to induce the protein expression.

The bacterial cells were harvested and sonicated, and the glutathione Sepharose 4B was prepared according to the instructions of the Bulk GST purification module (Pharmacia). Glutathione Sepharose 4B was added to the cell supernatant, then mixed gently for 30 min at room temperature. The mixture was loaded onto a column provided in the Bulk GST purification module. Harpin\textsubscript{Xoo} was cut from the GST-harpin\textsubscript{Xoo} fusion protein and eluted according to the instructions of the Thrombin cleavage capture kit (Novagen, San Diego, USA). Harpin\textsubscript{Xoo} was then subjected to a boiling water bath for 10 min and centrifuged at 10,000 g for 5 min to remove insoluble materials. The supernatant contained purified harpin\textsubscript{Xoo}. The GST was eluted according to the instructions of the manufacturer. The concentration of purified harpin\textsubscript{Xoo} was measured using the BAC-100 protein quantitative analysis kit (Biocolor Biotech, Shanghai, China).

New Zealand white rabbits (College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China) were immunized subcutaneously at multiple sites with 200 µg of purified harpin\textsubscript{Xoo} in 0.5 ml of isotonic saline emulsified with an equal volume of Freund complete adjuvant. Animals were boosted at weekly intervals with 30 µg of antigen emulsified with Freund incomplete adjuvant. Six weeks later, the rabbits were bled and the sera were tested for antibody by immunoblotting. Anti-harpin\textsubscript{Xoo} serum titer was determined by enzyme-linked immunosorbent assay (ELISA) method. Pre-immune sera were also obtained and analyzed in parallel. IgG was isolated from anti-harpin\textsubscript{Xoo} serum using 40% saturated ammonium sulfate according to an ammonium sulfate precipitation protocol [22]. Anti-harpin\textsubscript{Xoo} antibodies precipitated from 1 ml of anti-harpin\textsubscript{Xoo} serum were redissolved in the same volume of phosphate-buffered saline (PBS) and dialyzed overnight against the same buffer.

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out on a 13% slab gel according to the method of Sambrook et al. [23] and samples were boiled for 5 min before loading. Proteins on the polyacrylamide gel were stained with 0.25% Coomassie brilliant blue R-250 (Amresco, Ohio, USA). In immunoblotting, the heat-treated proteins separated by SDS-PAGE were electrotransferred to a nitrocellulose membrane. The membrane was reacted with polyclonal antibody against harpin\textsubscript{Xoo} and horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG antibody (Sino-American Biotech, Luoyang, China). Finally the membrane was detected with 3,3’-diaminobenzidine tetrahydrochloride.

The sensitivity to protease K and heat-stability of purified harpin\textsubscript{Xoo} were measured according to Wen and Wang [11], and the commercial product Messenger containing 3% harpin\textsubscript{Xo}, kindly provided by Dr. Zhong-Min WEI (Eden Bioscience, Annapolis, USA), was used as a control. In brief, protease K or protease K+phenyl methyl sulphonyl fluoride (PMSF, a protease inhibitor, final concentration 0.5 mM) was added to harpin (10 µg/ml) in PBS with final concentration of protease K being 0.2 µg/ml and maintained at 37 °C for 15 min; heat-stability assay was performed.
with a boiling water bath for 10 min. Harpins were treated with eucaryotic metabolic inhibitors, cycloheximide, actinomycin D and lanthanum chloride, according to He et al. [24].

To induce HR, harpin\textsubscript{Xoo} and harpin\textsubscript{Ea}, which were treated with boiling water, cycloheximide, actinomycin, lanthanum chloride, protease K, or protease K+PMSF, were infiltrated into \textit{Nicotiana tabacum} L. cv. Xanthi tobacco leaves, the seeds of which were from the Tobacco Laboratory of Shandong Agricultural University (Tai’an, China) [1]. HR was examined after 24 h.

We also investigated the induction of resistance for tobacco mosaic virus. Harpin\textsubscript{Ea} and purified harpin\textsubscript{Xoo} were dissolved in distilled water to give a concentration of 30 µg/ml, and sprayed on nine leaves of three \textit{N. tabacum} L. cv. Xanthi tobacco plants. Water was used as a control. Tobacco plants were grown in a greenhouse for 6–7 weeks before use. After harpin’s being sprayed for 16 h, the tobacco mosaic viruses, kindly provided by Dr. Yi-Jun ZHOU (Jiangsu Academy of Agricultural Science, Nanjing, China), were inoculated according to the method described by Fang [25]. Three to four days later, the plants were assayed for typical necrotic lesion production.

Results

GST-harpin\textsubscript{Xoo} fusion protein was expressed in the presence of IPTG and more soluble GST-harpin\textsubscript{Xoo} protein was obtained in culture conditions at 28 ºC than that at 37 ºC for an additional 4 h after 0.1 mM IPTG was added (Fig. 1). The crude GST-harpin\textsubscript{Xoo} protein was purified by the Bulk GST purification module, and the GST tag was removed by thrombin (Fig. 2). The normally purified harpin\textsubscript{Xoo} was visualized as multiple bands by SDS-PAGE, but visualized as a single band after a boiling water bath (Fig. 2, lanes 2 and 3). The yield was about 6 mg harpin\textsubscript{Xoo} per liter of culture.

The polyclonal antibody against harpin\textsubscript{Xoo} was produced. The titer of the antibody against harpin\textsubscript{Xoo} reached 1:3000. Western blot analysis showed the antibody could be used to detect the purified harpin\textsubscript{Xoo}, harpin\textsubscript{Xoo} in the total protein of \textit{E. coli} BL21/pGEX-hpa1, or harpin\textsubscript{Xoo} from the \textit{hpa1} transgenic rice line TR19 as reported in [26] (Fig. 3). A band with a molecular weight of 14 kDa was detected in

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Expression of the recombinant glutathione S-transferase (GST)-harpin\textsubscript{Xoo} fusion protein}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of expression and purification of harpin\textsubscript{Xoo} protein in \textit{Escherichia coli}}
\end{figure}

http://www.abbs.info; www.blackwellpublishing.com/abbs
all materials presumed to contain harpinXoo. The molecular weight of 14 kDa was equal to the expected size based on sequence data of gene hpa1. A band of about 40 kDa was found in the total protein of E. coli BL21/pGEX-hpa1, which should be the GST-harpinXoo fusion protein (the molecular weight of GST is about 26 kDa). An additional band was found with a molecular weight of 29 kDa, more than double that of the 14 kDa band. This band might be a dimer of harpinXoo. No bands appeared in negative controls, including the purified GST, the total protein of E. coli BL21/pGEX-2T and rice variety R109. These results indicated that the polyclonal antibody developed in this experiment was specific against harpinXoo.

The purified harpinXoo lost the ability to elicit HR after treatment with protease K but could still elicit HR after heat treatment in a boiling water bath and treatment with protease K + PMSF, suggesting that harpinXoo is sensitive to protease K but stable to heat treatment (Fig. 4). The capacity of harpinXoo to induce HR was restricted after treatment by various plant metabolic inhibitors (Fig. 4). These results indicate that the HR induced by harpinXoo requires active plant metabolism and is not a result of direct toxicity.

Both harpinEa and harpinXoo could induce tobacco mosaic virus (TMV) resistance in tobacco, but harpinXoo was more effective than harpinEa (Table 1).

Discussion

Harpins are a special family of proteins produced by plant bacteria. They are able to elicit HR on some non-host plants and, at the same time, induce a series of defense reactions. Recently, evidence has shown that crude harpins from two pathovars of X. oryzae pv. oryzae and X. oryzae pv. oryzicola (Xoo) have these basic properties [20]. HR, in general, is different from damage caused by toxins. HR is a rapid cell apoptosis induced by avirulent pathogens or elicitors produced by avirulent pathogens [27].

In our previous study, the hpa1 gene was inserted into pET-30a(+), and harpinXoo was expressed in E. coli, but not purified, and antibody against harpinXoo was not produced [11,20]. In this research, the GST gene fusion system was used and a large amount of purified harpinXoo protein (up to 6 mg per liter of culture) was obtained. The inhibition of harpinXoo-induced HR by some plant metabolic inhibitors and the induction of TMV resistance, together with the physical characteristics of harpinXoo, suggest that
the protein we purified is a typical harpin, similar to harpin$_{eha}$ [9] and harpin$_{ea}$ [1]. The purification of harpin$_{xoo}$ and production of its antibody make it possible to further study on its structure and function, as well as monitor the protein produced in recombinant microorganisms or transgenic plants.

Previous reports indicate that the plant-pathogenic bacteria do not produce harpins in culture because they are induced in nutrient-poor conditions that mimic the plant apoplast [28–32]. Recently, two harpin-like proteins have been isolated in a small amount from bacterial cells of Xoo and Xooc cultured in NB medium [33]. In addition, abundant pigment and lipopolysaccharide produced by Xoo make it difficult to purify the harpin$_{xoo}$ from Xoo [34,35]. Thus, the purification of harpin$_{xoo}$ from E. coli is easier than from Xoo.

Our result showed harpin$_{xoo}$ was more effective than harpin$_{ea}$ in inducing TMV resistance in tobacco. It has also been reported that harpin$_{xoo}$ shows better results than harpin$_{eha}$ in controlling Fusarium wilt and Verticillium wilt on cotton in the field [36]. The probable reason was that the molecular weight of harpin$_{xoo}$ (14 kDa) is smaller than that of harpin$_{ea}$ (44 kDa), and the molarity of harpin$_{xoo}$ would be higher than that of harpin$_{ea}$ at the same concentration (W/V) of protein solution.

We found that GST-harpin$_{xoo}$ fusion proteins expressed in culture conditions at 28 °C were more soluble than those at 37 °C. The possible reason is that the lower temperature is favorable to the accurate folding of GST-harpin$_{xoo}$ fusion proteins [37].

The hypothesized dimer of harpin$_{xoo}$ was found in Western blot analysis of this study. A similar phenomenon was reported in harpin$_{eha}$ when it was dissolved in a neutral buffer system [38]. The possibility of dimer formation of harpin$_{xoo}$ may be due to incomplete protein denaturation. Wu et al. [39] reported that the NHR3 domain of the ETO protein was a tight tetramer, but four bands, representing tetramer, trimer, dimer and monomer, could be observed by SDS-PAGE, although the loaded sample was boiled for several minutes at 90 °C. They proposed that the oligomerization of the NHR3 domain might be due to the combining strength of elements such as salt bridge, hydrophobic strength and hydrogen bond, because the NHR3 domain contains no cysteines and does not involve formation of a disulphide bond [39]. However, a cysteine present at position 45 at the N terminus of harpin$_{xoo}$ [20] may form disulphide bond, leading to the formation of harpin$_{xoo}$ dimer. The formation of disulfide bond would be the main reason of dimer in transgenic rice. The oligomerization of harpin may affect the interaction between harpin and the plant cell membrane [38]. The similar function of the oligomerization of animal bacterial protein toxins such as α-toxin, streptolysin-O and hemolysin, has been reported [40].

In summary, we have expressed and purified a harpin protein in E. coli and produced polyclonal antibody against it. The purified protein has similar biological characteristics as the previously reported crude harpin$_{xoo}$ [11] and harpin$_{eha}$ [1], indicating that the protein we purified is harpin$_{xoo}$. The polyclonal antibody has been successfully used in detection of harpin$_{xoo}$ expression in transgenic rice.

Acknowledgements

We thank Prof. Gen-Xing XU and Dr. Geng-Feng FU of the Institute of Molecular Medicine (Nanjing Military Medical College, Nanjing, China) for useful suggestions in partial experimental design. We are also grateful to Dr. Zhong-Li CUI of Nanjing Agricultural University (Nanjing, China) for helpful comments on manuscript preparation.

References

5 Qiu D, Wei ZM, Bauer DW, Beer SV. Treatment of tomato seed with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathol 1997, 87: S80
8 Galán JE, Collmer A. Type III secretion machines: Bacterial devices for protein delivery into host cells. Science 1999, 284: 1322–1328
9 He SY, Huang RC, Collmer A. Pseudomonas syringae pv. syringae harpin$_{eha}$: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 1993, 73: 1255–1266

14 Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A. The type III (Hrp) secretion pathway of plant patho-

38 Chen CH, Lin HJ, Feng TY. An amphiphilic protein from sweet pepper can dissociate harpin_{AVr} multimeric forms and intensify the harpin_{AVr}-mediated hypersensitive response. Physiol Mol Plant Pathol 1998, 52: 139–149.
