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Abstract        Although the sequence information on G-protein coupled receptors (GPCRs) continues to
grow, many GPCRs remain orphaned (i.e. ligand specificity unknown) or poorly characterized with little
structural information available, so an automated and reliable method is badly needed to facilitate the identifi-
cation of novel receptors. In this study, a method of fast Fourier transform-based support vector machine
has been developed for predicting GPCR subfamilies according to protein’s hydrophobicity. In classifying
Class B, C, D and F subfamilies, the method achieved an overall Matthew’s correlation coefficient and
accuracy of 0.95 and 93.3%, respectively, when evaluated using the jackknife test. The method achieved an
accuracy of 100% on the Class B independent dataset. The results show that this method can classify GPCR
subfamilies as well as their functional classification with high accuracy. A web server implementing the
prediction is available at http://chem.scu.edu.cn/blast/Pred-GPCR.
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G-protein coupled receptors (GPCRs) constitute a
superfamily of cell surface receptor proteins characterized
by seven transmembrane segments. The N-terminus is
always located extracellularly and the C-terminus extends
into the cytoplasm, which makes these proteins capable
of transducing signals into the cell by the heterotrimeric
G-protein [1]. GPCRs play a key role in cellular signaling
networks that regulate various basic physiological
processes, such as neurotransmission, cell metabolism,
secretion, cell differentiation and growth, inflammatory
and immune responses, smell, taste and vision [2]. More
than 50% of drugs now available on the market act through
GPCRs [3]. Although there have been methods developed
to build the structural models of GPCRs [4,5], the struc-
ture of only one GPCR, bovine rhodopsin, has been solved
experimentally.

The identification of novel GPCRs will greatly facilitate
the target validation process and automatically provide a
possible compound-screening assay [6]. In the past, many

strategies have been used to identify novel GPCRs. The
simplest and most frequently used method is to search a
sequence database using sequence alignment tools, such
as BLAST and FASTA [7−9]. Several pattern databases
(e.g. PRINTS) have been built [10,11]. However, they are
not always successful when the query proteins have no
significant sequence similarity to the sequences in the
database. The Pfam classifier based on the profile-hidden
Markov model has been developed [12−15], but on the
class level. To overcome these limitations, the support
vector machine (SVM)-based methods have been used to
classify the families and subfamilies, even sub-subfamilies,
of GPCRs [3,16,17]. Another method using binary
topology pattern has also been used to identify eukaryotic
GPCRs [18].

The main goal of this work is to develop a method to
determine GPCRs’ function at the subfamily level. A new
method was developed for classifying subfamilies belonging
to Class B, C, D and F GPCRs. This method couples fast
Fourier transform (FFT) with SVM on the basis of the
hydrophobicity of amino acid sequences. The performance
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of this method was validated by the jackknife test and
evaluated by the independent dataset test.

Methods

Dataset

To collect the sequences used for this study, all of the
sequences belonging to Class B, C, D and F in GPCRDB
(March 2005 release 9.0) (http://www.gpcr.org/7tm/) [19]
were picked out, then all orphan/putative sequences and
fragments were removed. None of the sequences was iden-
tical to another in the dataset. The subfamilies that con-
tained less than 10 sequences were dropped out. For Class
B GPCRs, the sequences marked as “new” were excluded
as the independent dataset; and because the other three
classes were relatively small, all the eligible sequences were
used. The final dataset contained 403 sequences belong-
ing to 17 different subfamilies. The number of sequences
for each different subfamily is listed in Table 1.

hydrophobicity, bulk and electronic property, were taken
into account. The hydrophobicity model, c-p-v model [20]
and electron-ion interaction potential (EIIP) model [21]
were selected. The hydrophobicity determines the struc-
ture and function of proteins, especially for the transmem-
brane proteins. Three different hydrophobicity scales,
KDHΦ [22], MHΦ [23] and FHΦ [24], were selected and
optimized. The c-p-v model includes the composition (c),
polarity (p) and molecular volume (v). The EIIP model
describes the average energy states of all valence elec-
trons of amino acid sequences. These numerical series
are normalized to zero mean and unit standard deviation,
as defined in Equation 1:
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where xij is some property value of the ith amino acid
residue in the jth sequence, jx  is the mean property value
of the jth sequence, and sj is the standard deviation of the
jth sequence.

FFT

The Fourier transform changes the signal from time-
based to frequency-based, as shown in Equation 2:
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FFT has been applied to protein sequence comparison
[25] and rapid multiple sequence alignment [26]. FFT is
defined in Equation 3:
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where Nie /)2( πω −=  is an Nth root of Unity. N is the num-
ber of frequency points.

In this work, 512 frequency points were set, and the
power spectrum, a measurement of the power at each
frequency, was used. A plot of power versus frequency is
called the power spectrum or power spectral density. The
power at each frequency point was taken as the input fea-
ture of SVMs. The numerical sequences of variable lengths
are transformed to fixed length vectors in this way.

SVM

SVM [27,28] is a kind of learning machine based on
statistical learning theory. The most attractive characteris-
tics of SVM are the absence of local minima, the sparseness
of the solution, and the use of the kernel-induced feature
spaces. The SVM training process always seeks a global
optimized solution and avoids over-fitting, so it has the
ability to handle a large number of features and a relatively

Quantitative description of proteins

The quantitative description of amino acid sequences is
crucial. Here, three principal properties of proteins, the

Table 1        Number of sequences belonging to each G-protein
coupled receptor (GPCR) subfamily

Class GPCR subfamily n

Class B Calcitonin 20
Corticotropin releasing factor 23
Glucagon 12
Growth hormone-releasing hormone 13
Parathyroid hormone 17
PACAP 11
Vasoactive intestinal polypeptide 14
Latrophilin 20
Methuselah-like proteins 21

Class C Metabotropic glutamate 46
Calcium-sensing like 18
GABA-B 23
Taste receptors 12

Class D Fungal pheromone A-factor like 16
Fungal pheromone B like 32

Class F Frizzled 94
Smoothened 11

n, number of sequences.
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small dataset.
The basic ideas behind SVM can be introduced as

follows. For a two-class problem, there are a series of
samples described by the feature vectors xi(i=1,2,…,l)
(Equation 4) with corresponding labels yi={+1,−1}(i=1,
2,…,l) (Equation 5). To classify the two classes of
samples, SVM maps the input vectors into a higher di-
mensional feature space, then constructs the maximal
margin hyperplane (MMH), which maximizes the distance
of the closest vectors belonging to the two classes to the
hyperplane. The MMH can be obtained by solving the fol-
lowing convex quadratic programming problem:
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where C is a regularization parameter that controls the
trade-off between the margin and classification error.

K(xi,xj) is the kernel function. In this paper, the radial
basis function was selected as the kernel function
(Equation 6):
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where σ is the kernel width parameter.
The decision function implemented by SVM can be

written as Equation 7:
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The prediction of GPCR subfamilies is a multi-class clas-
sification problem. In this paper, n SVMs were constructed
for n-class classification. The ith SVM was trained with
all samples in the ith subfamily with the label “1” and all
other samples with the label “−1”. The SVMs trained in
this way were referred to as one-versus-rest SVMs [29].
All the kernel parameters were kept constant except for C
and σ. All the programs of this method were written in
Matlab 7.0 programming language.

Performance evaluation

The models for all the subfamilies were validated by the
jackknife test. For cross-validation, the jackknife test is
deemed more effective and objective than the independent
dataset test and sub-sampling test [30,31]. Chou and Zhang
[32] have given a comprehensive discussion, and Mardia
et al. [33] has explained the mathematical principle behind
it. During the process of jackknifing, each receptor was
singled out in turn as a test receptor with the remaining
receptors used to train SVM.

Four indices, the accuracy (ACC) (Equation 8),
Matthew’s correlation coefficient (MCC) (Equation 9)
[34], total ACC (Equation 10) and total MCC (Equation
11), were calculated for the assessment of the prediction
system.
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Here, i is the any subfamily, N is the total number of
sequences, k is the subfamily number, exp(i) is the number
of sequences observed in subfamily i, p(i) is the number
of correctly predicted sequences of subfamily i, n(i) is
the number of correctly predicted sequences not of sub-
family i, u(i) is the number of under-predicted sequences,
and o(i) is the number of over-predicted sequences.

Results and Discussion

Selecting principal property for SVMs with the best
performance

FHΦ, one of the hydrophobicity scales, was used in the
hydrophobicity model. The hydrophobicity, c-p-v and EIIP
models transformed the amino acid sequences into nu-
merical sequences separately, which were then trans-
formed to input feature vectors using FFT of 512 fre-
quency points for SVMs. The performance of SVMs based
on the three models was validated using the jackknife test,
as shown in Table 2. Table 2 shows that the performance
based on the hydrophobicity model (FHΦ) is better than
that based on the c-p-v model or EIIP model, achieving
the highest total ACC and MCC of 91.6% and 0.94,
respectively. The results indicate that hydrophobicity is
the most important property of proteins and can prefer-
ably substitute the amino acid sequences quantitatively.

Selecting input feature vectors for SVMs from the
FFT transformed signals

The numerical sequences based on the hydrophobicity
model with FHΦ as the scale were transformed with FFT
to the input feature vectors for SVMs in three ways: (1)
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using all the 512 frequency points; (2) using 256 odd
frequency points extracted from the FFT signals; and (3)
using 256 even frequency points extracted from the FFT
signals. The performances of the three groups of feature
vectors were compared using the jackknife test, as shown
in Table 3. Table 3 shows that adopting 256 even frequency
points as input vectors can get the highest overall ACC
and MCC. For each GPCR subfamily, the total ACC of
adopting 256 even frequency points is equal or higher than
that of adopting the other two groups of frequency points.
So, in the later experiments, the input feature vectors of
SVMs were the 256 even frequency points for all the
subfamilies.

Selecting one hydrophobicity scale with the best
performance

Adopting the 256 even frequency points as the feature
vectors for each subfamily, the performances of SVMs

based on the different hydrophobicity scales were
compared using the jackknife test. The results are listed
in Table 4. From Table 4, we can see that the performance
of SVMs based on KDHΦ and MHΦ is not as good as that
based on FHΦ . The SVM based on FHΦ  achieves the
highest total ACC and MCC of 93.3% and 0.95,
respectively. This method can classify Class B with a total
ACC of 90.7%; Class C, 87.9%; Class D, 95.8%; and
Class F, 100%. The results prove that SVM based on
FHΦ  can classify GPCR subfamilies with the highest
accuracy.

Assigning a reliability index to the prediction

It is important to know the prediction reliability when
using machine-learning techniques to assign subfamilies
of GPCRs. The reliability index (RI) was assigned accord-
ing to the difference (noted as diff) between the highest
and the second-highest output score of SVMs in a multi-

Table 2        Performance of support vector machines based on the hydrophobicity model (FHΦ), composition, polarity and
molecular volume (c-p-v) model or electron-ion interaction potential (EIIP) model respectively, using fast Fourier transform of 512
frequency points, as validated by the jackknife test

Class GPCR subfamily Hydrophobicity model* c-p-v model EIIP model

ACC MCC ACC MCC ACC MCC

Class B Calcitonin 95.0% 0.97 85.0% 0.91 95.0% 0.97
Corticotropin releasing factor 100.0% 1.00 95.7% 0.97 95.7% 0.97
Glucagon 91.7% 0.95 91.7% 0.95 58.3% 0.75
Growth hormone-releasing hormone 84.6% 0.91 76.9% 0.87 69.2% 0.82
Parathyroid hormone 76.5% 0.86 58.8% 0.75 52.9% 0.71
PACAP 90.9% 0.95 81.8% 0.90 90.9% 0.95
Vasoactive intestinal polypeptide 85.7% 0.92 71.4% 0.83 57.1% 0.74
Latrophilin 100.0% 1.00 95.0% 0.97 95.0% 0.97
Methuselah-like proteins 61.9% 0.76 57.1% 0.73 47.6% 0.66
Total 87.4% 0.92 80.1% 0.88 75.5% 0.84

Class C Metabotropic glutamate 91.3% 0.92 82.6% 0.85 91.3% 0.92
Calcium-sensing like 66.7% 0.79 61.1% 0.75 61.1% 0.75
GABA-B 95.7% 0.97 65.2% 0.77 65.2% 0.77
Taste receptors 91.7% 0.95 91.7% 0.95 66.7% 0.80
Total 87.8% 0.91 75.8% 0.83 76.8% 0.84

Class D Fungal pheromone A-Factor like 87.5% 0.91 93.8% 0.95 50.0% 0.63
Fungal pheromone B like 100.0% 1.00 100.0% 1.00 100.0% 1.00
Total 95.8% 0.97 97.9% 0.98 83.3% 0.88

Class F Frizzled 100.0% 1.00 100.0% 1.00 100.0% 1.00
Smoothened 90.9% 0.95 90.9% 0.95 90.9% 0.95
Total 99.0% 0.99 99.0% 0.99 99.0% 0.99

Total 91.6% 0.94 86.0% 0.91 82.7% 0.88

For each subfamily, all the negative samples were correctly predicted. ACC, accuracy; GPCR, G-protein coupled receptors; MCC, Matthew’s correlation coefficient.
* FHΦ scale was used.
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class classification [3,27]. The reliability score in this work
has been computed using Equation 12:
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The expected prediction accuracy and the number of
sequences for each given RI were calculated, as shown
in Fig. 1. Fig. 1 shows that the model predicted 81.9%
(330/403) sequences with RI≥5. Three hundred and thirty
sequences (RI≥5) were nearly 100% correctly predicted,
and only one sequence is under-predicted (the accuracy is
329/330=99.7%). These results suggest that our model
can predict GPCR subfamilies with high reliability.

Independent dataset test

Because Class C, D and F have fewer members than
Class B, all proteins of Class C, D and F were used for the

training dataset. As described in “Methods”, the sequences
marked as “new” in Class B in GPCRDB (March 2005
release 9.0) that do not exist in the training set were used
to check the practical application of this method as the
independent dataset. There are three receptors for the
calcitonin subfamily, three for the corticotropin-releasing
factor subfamily, two for the glucagon subfamily, two
for the parathyroid hormone subfamily, four for the PACAP
subfamily, three for the vasoactive intestinal polypeptide
subfamily and ten for the latrophilin subfamily. The overall
ACC is 100%, which shows the method’s strong facility
for practical application.

Comparison with SVM based on amino acid composi-
tion and dipeptide composition

Artificial intelligence-based techniques such as SVM
and the neural network require a fixed number of inputs
for training, so it is necessary to find a strategy for

Table 3        Performance of support vector machines based on the hydrophobicity model (FHΦ) adopting 512, 256 odd or 256 even
frequency points respectively, as validated by the jackknife test

Class GPCR subfamily Frequency points used

512 points 256 odd points 256 even points

ACC MCC ACC MCC ACC MCC

Class B Calcitonin 95.0% 0.97 95.0% 0.97 95.0% 0.97
Corticotropin releasing factor 100.0% 1.00 100.0% 1.00 100.0% 1.00
Glucagon 91.7% 0.95 100.0% 1.00 100.0% 1.00
Growth hormone-releasing hormone 84.6% 0.91 84.6% 0.91 84.6% 0.91
Parathyroid hormone 76.5% 0.86 82.4% 0.90 82.4% 0.90
PACAP 90.9% 0.95 90.9% 0.95 90.9% 0.95
Vasoactive intestinal polypeptide 85.7% 0.92 85.7% 0.92 85.7% 0.92
Latrophilin 100.0% 1.00 95.0% 0.97 100.0% 1.00
Methuselah-like proteins 61.9% 0.76 61.9% 0.76 71.4% 0.83
Total 87.4% 0.92 88.1% 0.93 90.7% 0.94

Class C Metabotropic glutamate 91.3% 0.92 93.5% 0.94 93.5% 0.94
Calcium-sensing like 66.7% 0.79 66.7% 0.79 66.7% 0.79
GABA-B 95.7% 0.97 87.0% 0.91 91.3% 0.94
Taste receptors 91.7% 0.95 91.7% 0.95 91.7% 0.95
Total 87.9% 0.91 86.9% 0.91 87.9% 0.91

Class D Fungal pheromone A-Factor like 87.5% 0.91 81.3% 0.86 87.5% 0.91
Fungal pheromone B like 100.0% 1.00 100.0% 1.00 100.0% 1.00
Total 95.8% 0.97 93.8% 0.95 95.8% 0.97

Class F Frizzled 100.0% 1.00 100.0% 1.00 100.0% 1.00
Smoothened 90.9% 0.95 90.9% 0.95 100.0% 1.00
Total 99.0% 0.99 99.0% 0.99 100.0% 1.00

Total 91.6% 0.94 91.3% 0.94 93.3% 0.95

For each subfamily, all the negative samples were correctly predicted. ACC, accuracy; GPCR, G-protein coupled receptors; MCC, Matthew’s correlation coefficient.

0.20, <≤ diff

0.2, ≥diff
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Fig. 1        Expected prediction accuracy with a given reliability
index (RI)

Table 4        Performance of support vector machines based on different hydrophobicity scales using 256 even frequency points, as
validated by the jackknife test

Class GPCR subfamily KDHΦ M H Φ FH Φ

ACC MCC ACC MCC ACC MCC

Class B Calcitonin 95.0% 0.97 90.0% 0.94 95.0% 0.97
Corticotropin releasing factor 100.0% 1.00 100.0% 1.00 100.0% 1.00
Glucagon 83.3% 0.91 91.7% 0.95 100.0% 1.00
Growth hormone-releasing hormone 84.6% 0.91 76.9% 0.87 84.6% 0.91
Parathyroid hormone 76.5% 0.86 76.5% 0.86 82.4% 0.90
PACAP 90.9% 0.95 90.9% 0.95 90.9% 0.95
Vasoactive intestinal polypeptide 71.4% 0.83 92.9% 0.96 85.7% 0.92
Latrophilin 100.0% 1.00 100.0% 1.00 100.0% 1.00
Methuselah-like proteins 66.7% 0.80 66.7% 0.80 71.4% 0.83
Total 86.1% 0.92 87.4% 0.93 90.7% 0.94

Class C Metabotropic glutamate 95.7% 0.96 91.3% 0.92 93.5% 0.94
Calcium-sensing like 66.7% 0.79 66.7% 0.79 66.7% 0.79
GABA-B 8.7% 0.26 8.7% 0.26 91.3% 0.94
Taste receptors 91.7% 0.95 91.7% 0.95 91.7% 0.95
Total 69.7% 0.77 67.7% 0.75 87.9% 0.91

Class D Fungal pheromone A-Factor like 87.5% 0.91 68.8% 0.77 87.5% 0.91
Fungal pheromone B like 100.0% 1.00 100.0% 1.00 100.0% 1.00
Total 95.8% 0.97 89.6% 0.92 95.8% 0.97

Class F Frizzled 100.0% 1.00 100.0% 1.00 100.0% 1.00
Smoothened 100.0% 1.00 100.0% 1.00 100.0% 1.00
Total 100.0% 1.00 100.0% 1.00 100.0% 1.00

Total 86.9% 0.91 86.4% 0.90 93.3% 0.95

For each subfamily, all the negative samples were correctly predicted. ACC, accuracy; GPCR, G-protein coupled receptor; MCC, Matthew’s correlation coefficient.

bioinformatics using intelligence techniques. The amino
acid and dipeptide compositions of proteins can be used
to encapsulate the protein information in a vector of 20
and 400 dimensions, respectively. It is worth comparing
our method with the SVM based on amino acid composition
and dipeptide composition respectively. But the perfor-
mances of the SVMs based on the two approaches with
the jackknife test indicate that neither of the two approaches
can discriminate any subfamily successfully. It may be
because Class B, C, D and F do not have enough samples,
so that there is no statistical meaning for each subfamily
using the two statistical approaches. However, our method
can classify GPCR subfamilies with good performance,
indicating its powerful ability to deal with relatively small
datasets.

Prediction Web Server

Based on this study, a web server has been set up to

transforming the variable lengths of proteins to fixed
length patterns. Amino acid composition [3,29,33] and
dipeptide composition [3,35,36] have been used widely in
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allow users to recognize GPCR subfamilies. It is freely
available at http://chem.scu.edu.cn/blast/Pred-GPCR.
Users can submit the query sequence in the standard format
of FASTA. After analysis, the results will show the GPCR
subfamily to which the query sequence belongs.

Conclusion

This paper describes a method of SVM in combination
with FFT to classify GPCR subfamilies. During the develop-
ment of SVMs, three principal properties, hydrophobicity,
bulk and electronic property, were compared. The results
show that the hydrophobicity of proteins is the most
important property in deciding GPCRs’ function. Three
hydrophobicity scales, KDHΦ , MHΦ  and FHΦ , were
optimized, and the performance based on FHΦ was best.
It was indicated that taking 256 even frequency points of
FFT transformed signals as input vectors could achieve
the highest accuracy. From these results, it is obvious
that the substitution model can affect the performance of
the method. We think that the performance of this method
will be improved further if a more suitable substitution
model is found. We expect to find a hybrid model (related
to hydrophobicity) that can integrate other important
properties in a reasonable way, rather than using hydro-
phobicity alone. The establishment of such methods will
facilitate drug discovery for many diseases.
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