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The hedgehog (Hh) pathway, initially discovered in Drosophila
by two Nobel laureates, Dr. Eric Wieschaus and Dr.
Christiane Nusslein-Volhard, is a major regulator for cell
differentiation, tissue polarity and cell proliferation. Studies
from many laboratories, including ours, reveal activation of
this pathway in most basal cell carcinomas and in
approximately 30% of extracutaneous human cancers,
including medulloblastomas, gastrointestinal, lung, breast
and prostate cancers. Thus, it is believed that targeted
inhibition of Hh signaling may be effective in treating and
preventing many types of human cancers. Even more exciting
is the discovery and synthesis of specific signaling
antagonists for the Hh pathway, which have significant clinical
implications in novel cancer therapeutics. This review
discusses the major advances in the current understanding
of Hh signaling activation in different types of human cancers,
the molecular basis of Hh signaling activation, the major
antagonists for Hh signaling inhibition and their potential
clinical application in human cancer therapy.
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The hedgehog (Hh) gene was identified by two Nobel
laureates through genetic analysis of segmentation of fruit
fly Drosophila [1]. In the early 1990s, three homologs of
the Hh gene were identified in vertebrates [2−6]. As an
essential developmental signaling pathway, the Hh pathway
is critical for maintaining tissue polarity and stem cell
population. Inactivation of this pathway causes develop-
mental defects such as holoprosencephaly [7]. Hyperac-
tivation of this pathway is found in most basal cell

carcinomas (BCCs) and many extracutaneous cancers [8−
10]. The emerging role of Hh signaling in human cancer
further emphasizes the importance of studying this
pathway.

Current Understanding of Hh Signaling
Mechanisms

Overall, the general signaling mechanisms of the Hh
pathway is conserved from fly to human [11]. The seven
transmembrane domain containing the protein smoothened
(SMO) serves as the key player for signal transduction of
this pathway. However, the pathway’s function is inhibited
by another transmembrane protein, patched (PTC), in the
absence of Hh ligands. In the presence of active Hh ligands,
binding of Hh to its receptor PTC releases this inhibition,
allowing SMO to signal downstream to Gli transcription
factors. As transcription factors, Gli molecules can regulate
target gene expression by directly associating with a
specific consensus sequence located in the promoter region
of the target genes [12,13]. Fig. 1 shows the simplified
diagram of Hh signaling in the presence or absence of Hh.

Hh proteins [one Hh in Drosophila and three Hhs in
vertebrates: sonic hedgehog (Shh), Indian hedgehog (Ihh)
and desert hedgehog (Dhh)] are secreted molecules,
functioning both on nearby and distant cells in developing
tissues. Following translation, Hh proteins enter the
secretory pathway and undergo autoprocessing and lipid
modification reactions that produce a signaling peptide
modified at both ends by palmitoyl (N-terminus) and
cholesteryl (C-terminus) adducts [14−16]. The movement
of Hh proteins is regulated by several molecules:
Dispatched (Disp), the transmembrane transporter-like
protein for release of Hh from secreting cells [11–14];
Dally-like (Dlp) and Dally, heparan sulfate proteoglycans
for extracellular transport of Hh protein [15]; and  enzymes,
such as sulfateless and tout-velu, for heparan sulfate
biosynthesis [17−19].
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PTC [one PTC in flies and two PTCs in vertebrates:
patched homolog 1 (PTCH1) and patched homolog 2
(PTCH2)] is the major receptor for Hh proteins [20].
Several molecules are involved in regulating Hh reception.
Hh-interacting protein (HIP) can compete with PTC in
binding Hh, thus preventing Hh signaling [21]. Recent
studies indicate that two additional molecules, Cdo and
Gas1, are also required for Hh binding [22−28]. It is still
not entirely clear how binding of Hh proteins results in
pathway activation. One hypothesis is that, in the absence
of Hh, PTC normally inhibits the function of SMO. Binding
of Hh proteins to the receptor PTC releases PTC-mediated
inhibition on SMO, thus SMO can signal to downstream
molecules.

Very little is known about signaling events immediately
downstream of SMO. In Drosophila, several laboratories
have shown that SMO accumulation is promoted through
protein phosphorylation at the C-terminus by protein kinase
A (PKA) and casein kinase I [29,30]. SMO mutants lacking
these phosphorylation sites are defective in Hh signaling.
However, these phosphorylation sites are not conserved
in vertebrate SMO, indicating a different mechanism for
SMO signaling in higher organisms [30].

Accumulated evidence from several groups indicates
that the primary cilia found on most vertebrate cells play

an important but undefined role in the Hh pathway [31−
35]. Functions of the primary cilium is regulated by large
protein complexes involved in intraflagellar transport (IFT),
which functions in retrograde and anterograde movement
of cargo within the primary cilia [36]. A number of
mutations encoding IFT proteins involved in the primary
cilium anterograde IFT have been described, resulting in
mice with Hh loss of function phenotypes [32]. Several
Hh components, including SMO and Gli molecules, are
also present at the primary cilium upon Hh stimulation [37].
A SMO mutant lacking ciliary translocation blocks Hh
signaling [31]. Gli3 processing is significantly affected by
IFT mutants [33,34], suggesting that SMO activates down-
stream molecules at the cilium. However, it is not clear
how SMO is transported to the cilium in response to Hh
signaling and how SMO activates downstream effectors.
Evidence suggests that SMO is endocytosed and can be
degraded in the lysosomes [38]. In cultured mammalian
cells, both SMO and PTCH1 are internalized and localized
to endosomes, and Hh induces segregation of SMO-
containing vehicles from Hh-PTCH1 complexes destined
for lysosomal degradation [38]. It is not clear how SMO
endocytosis is regulated.

Based on studies of Drosophila, there are several
molecules, including COS2 and Fused, genetically
downstream of SMO signaling, but the functions of their
vertebrate homologs in Hh signaling remains to be
established. Inactivation of vertebrate homologs of COS2,
KIF27 and KIF7, do not affect Hh signaling in cultured
mammalian cells [39], which suggests that KIF7 and KIF27
may not be required for Hh signaling. Because the homol-
ogy between COS2 and KIFs is very low, it is possible
that a few molecules replace the function of COS2 in
vertebrates. Alternatively, SMO signaling in vertebrates
may utilize a distinct mechanism. Additional evidence from
knockout mice with each of these KIF genes should provide
insight into the in vivo roles of these COS2 homologs.
Another surprise is that knockout of the vertebrate homolog
of Fused can survive for up to two weeks but die of
hydrocephalus [40,41]. No change of Hh signaling is seen
in these knockout mice, suggesting that Fused is not critical
for Hh signaling in early embryonic development. Based
on these studies, however, one can not ignore the possibi-
lity that Fused is only partially involved in Hh signaling.

Several novel cytoplasmic regulators of Hh signaling,
including Rab23 and tectonic [42,43], have been identified
as being unique to mammalian cells. Both Rab23 and
tectonic are negative regulators of Hh signaling downstream
of SMO, but the exact interacting partners are not clear.
Unlike many Rab proteins, Rab23 expresses both in the

Fig. 1 Simplified diagram of Hh signaling    Smoothened (SMO) is
the key signal transducer in the hedgehog (Hh) pathway. In the absence
of Hh, the Hh receptor patched (PTC) can suppress SMO activity and
generate repressor forms of Gli (GliR), leading to down-regulation of
Hh target genes. In the presence of Hh ligands, sonic hedgehog (Shh),
Indian hedgehog (Ihh) and desert hedgehog (Dhh), PTC is unable to
affect SMO signaling. SMO somehow can promote formation of acti-
vated forms of Gli (GliA), resulting in up-regulation of Hh target genes.
Gene mutations (PTC, SMO) or abnormal over-expression of Hh ligands
all can lead to elevated expression of Hh target genes.



Acta Biochim Biophys Sin (2008) | Volume 40 | Issue 7 | Page 672

Implications of hedgehog signaling antagonists for cancer therapy

nucleus and cytoplasm (our unpublished observation),
suggesting that Rab23 may have other functions besides
membrane trafficking.

The negative regulatory functions of suppressor of Fused
[Su(Fu)] in vertebrates, in contrast, are enhanced in
mammals. Su(Fu) in Drosophila was originally identified
genetically by its ability to suppress active Fused mutations,
but it is not itself required for pathway activity. Several
recent studies suggest that Su(Fu) plays a key negative
regulatory role in Hh signaling. Su(Fu) null mouse mutants
not only fail to repress the pathway [44], but have similar
phenotypes as inactivation of the other key negative
regulator acting upstream, PTCH1. Moreover, Su(Fu) null
MEFs and wild-type cells treated with Su(Fu) short
interfering RNAs display Hh pathway activation, supporting
a central role in pathway repression [44]. The skin
phenotype of Su(Fu)+/− mice is as severe as the PTCH+/−

mice, the latter is a classic model for tumor suppressor
function in the Hh pathway. At the molecular level, Su(Fu)
is shown to associate directly with and to inhibit Gli
molecules, though the details are unclear [45].

Ultimately, Hh signaling is transduced to downstream
Gli transcription factors, which can regulate target gene
expression by direct association with a consensus binding
site (5'-TGGGTGGTC-3') located in the promoter region
of the target genes [12,13,46,47]. There are several ways
to regulate the activity of Gli transcription factors. First,
nuclear-cytoplasmic shuttling of Gli molecules is tightly
regulated [45,48−50]. For example, PKA is shown to retain
Gli1 proteins in the cytoplasm (through a PKA site in the
nuclear localization signal peptide) [48], whereas active
Ras signaling promotes Gli nuclear localization [50].
Second, ubiquitination and protein degradation of Gli
molecules is also regulated by several distinct mechanisms,
including TrCP, Cul3/BTB and Numb/Itch [51−55]. In
addition to protein degradation, Gli3 and Gli2, to a lesser
extent, can be processed into transcriptional repressors,
which may be mediated by the TrCP E3 ligase [53]. Defects
in the retrograde motor for IFT are also shown to affect
Gli3 processing [56]. Fourth, transcriptional activity of
Gli molecules is also tightly regulated. It is reported that
EGF can synergize with Gli transcription factors to regulate
target gene expression [57]. Su(Fu) not only prevents
nuclear translocation of Gli molecules, but it also inhibits
Gli1-mediated transcriptional activity [58]. Table 1
summarizes the major components of the Hh pathway in
vertebrates.

There are several feedback regulatory loops in this
pathway. PTC, Hh-interacting protein (HIP), Gas1 and
Gli1, which are components of this pathway, are also the

target genes. PTC and HIP provide negative feedback
mechanisms to maintain the pathway activity at an
appropriate level in a given cell. In contrast, Gli1 forms a
positive regulatory loop. Gas1 is down-regulated by the
Hh pathway, but it is positively involved in Hh signaling.
Alteration of these loops, such as loss of PTCH1 in BCCs,
likely results in abnormal signaling of this pathway.

Activation of the Hh Pathway in Human Cancers

The major breakthrough in our understanding of Hh
signaling in human cancers came from the discovery that
mutations of the human homolog of the Drosophila patched
gene (PTCH1) are associated with a rare hereditary form
of BCC: basal cell nevus syndrome (also called Gorlin
syndrome) [59−61]. PTCH1 is the receptor for Hh proteins,
and previous studies have indicated that PTCH1 mainly
functions in embryonic development.

Mutations of PTCH1 in basal cell nevus syndrome
Loss-of-function mutations of PTCH1 are the cause of
basal cell nevus syndrome, the clinical features of which
were originally identified by Dr. Robert Gorlin. This
autosomal dominant disorder is distinguished by the
development of benign and malignant tumors, including
multiple BCCs, medulloblastomas and ovarian fibromas,
and less frequently fibrosarcomas, meningiomas,
rhabdomyosarcomas and cardiac fibromas. The disorder
is also characterized by developmental defects such as
pits of the palms and soles, keratocysts of the jaw and
other dental malformations, cleft palate, calcification of the
falx cerebri, spina bifida occulta and other spine anomalies,
and bifid ribs and other rib anomalies [62−64].

Analysis of the distribution of BCCs in affected individuals
in multiple families suggests that the underlying defect might
be a mutation in a tumor suppressor gene. This gene was
later mapped to chromosome 9q22-31, which is also
frequently deleted in sporadic BCCs [65]. Positional cloning
and candidate gene approaches identified the human
homolog of Drosophila patched as a candidate gene for
therapeutic strategies [59,60,66]. Making PTCH1 a good
candidate gene for basal cell nevus syndrome, vertebrate
patched was known to function in the development of
organs, such as neural tube, somites and limb buds [67],
with abnormalities. Screening of the patched coding region
in basal cell nevus syndrome patients revealed a wide
spectrum of mutations, the majority of which were
predicted to result in premature protein truncation. PTCH
mutations are mainly clustered into two large extracellular
loops and a large intracellular loop [68]. Kindreds with
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identical mutations differ dramatically in the extent of their
clinical features, suggesting that genetic background or
environmental factors may have an important role in
modifying the spectrum of both developmental and
neoplastic traits [69].

The tumor suppressor role of PTCH1 has been further
demonstrated in mice. Mice heterozygous for a PTCH1
null mutation exhibit the same essential features, such as
tumor development (eg medulloblastomas, rhabdomyo-
sarcomas and BCCs) and developmental defects (eg pina
bifida occulta), as basal cell nevus syndrome patients [70,
72]. The mouse studies confirm that PTCH1 functions as
a tumor suppressor.

Activation of the Hh pathway in sporadic BCCs
BCC, the most common human cancer, consistently has
abnormalities of the Hh pathway and often loses PTCH1
function due to point mutations and the loss of the

remaining allele. Most PTCH1 mutations lead to loss of
the protein function. Mice heterozygous for a PTCH1 null
mutation develop BCCs following UV irradiation or ion
radiation. Currently, PTCH+/− mice represent the most
practical model for UV-mediated BCC formation [72].

The PTCH1 gene region is lost in more than 50% of
human sporadic BCCs, whereas the Hh pathway is activated
in almost all BCCs, suggesting alteration of additional genes
in the Hh pathway in this type of skin cancer. Indeed,
mutations of SMO are found in about 10% of sporadic
BCCs [73−77]. Unlike wild-type SMO, expression of
activated SMO molecules in mouse skin results in forma-
tion of BCC-like tumors [73]. These findings provide
additional insight into the role of the Hh pathway in human
cancer. It has also been reported that Su(Fu) is mutated in
some BCCs [75]. LOH are not detected in the Su(Fu) gene
region, unlike in the PTCH1 region, in sporadic BCCs,
suggesting that Su(Fu) loss is not a major somatic change.

Function Vertebrate gene Knockout mouse References

Ligand Ligand Sonic hedgehog Embryonic lethal [105]
Indian hedgehog Embryonic lethal [106]
Desert hedgehog Male infertile [107]

Hh regulator Hh inhibitor Hh-interacting protein Embryonic lethal [21]
Receptor Receptor Patched homolog (PTCH) 1 Embryonic lethal, cancer [70,71]

PTCH2 Viable/cancer prone [108,109]
Co-receptors Receptor Cdo Embryonic lethal [110]

Gas1 Embryonic lethal [22−24]
Signal transducer Signal transducer Smoothened (SMO) Embryonic lethal [111]
Signaling intermediates Homologs of signaling KIF7 Not available −

protein COS2 KIF27 Not available −
Ciliary transport IFT88 Embryonic lethal [32]

IFT172 Embryonic lethal [32]
Homolog of fly Fu Fused Embryonic lethal [40,41]
Unknown function Rab23 Embryonic lethal [42]

Tectonic Embryonic lethal [43]
Signaling protein Suppressor of Fused Embryonic lethal, cancer [44]

Transcription factor Transcriptional factor Gli1 Viable [112]
Gli2 Embryonic lethal [113]
Gli3 Embryonic lethal [113]

Thr/Ser kinase Gli, SMO phosphorylation Protein kinase A (4 subunits) Viable [114,115]
GSK3 Embryonic lethal [116]
Casein kinase I (many isoforms) Viable −

E3 ligase for Gli E3 ligase β-TrCP1 Viable [117]
Cul3/BTB Not available [118]
Numb/Itch Embryonic lethal [119]

Table 1 The major components of the hedgehog (Hh) pathway in vertebrates
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Taking all the mutation data into account, the underlying
molecular basis for the activated Hh signaling still remains
unknown in approximately 30% of BCCs. Thus, we predict
that mutations of additional genes in the Hh pathway are
yet to be discovered in sporadic BCCs.

We have shown that activated Hh signaling in BCCs
leads to cell proliferation through elevated expression of
PDGFR [78], whereas targeted inhibition of Hh signaling
causes apoptosis via Fas induction [79].

Activation of Hh signaling in extracutaneous tumors
Recent studies indicate that Hh signaling is activated in
many types of extracutaneous tumors, including brain,
gastrointestinal, prostate, lung and breast cancers. Unlike
with BCCs, overexpression of Hh ligands is believed to be
responsible for activating Hh signaling in some of these
tumors [80,81]. In pancreatic, esophageal and liver
cancers, activation of this pathway is found in both early
tumors and metastatic cancer [82−84], suggesting that
Hh signaling may be a major trigger for carcinogenesis.
In support of these findings, transgenic mice with pan-
creatic-specific expression of Shh or Gli2 develop pan-
creatic tumors [85,86]. In other tumors, such as gastric
and prostate cancers, Hh signaling activation is associ-
ated with cancer progression [82,87−90]. Consistent with
these findings, inhibition of Hh signaling in prostate and
gastric cancer cells reduces cell invasiveness (our un-
published observation)[88]. Recently, reports have sug-
gested that Hh signaling is required for the development
and progression of melanoma, gliomas and B-cell lym-
phomas [91,92].

Different, and sometimes contradictory results have
been reported regarding Hh signaling activation in different
tumor types. There are several reasons for this. First, it is
possible that the involvement of Hh signaling in human
cancers may be context dependent, occurring in some
tissues or cell lines but not in others. Evidence suggests
that Hh signaling may be involved in maintaining cancer
stem cell  proliferation [93,94] .  Second, tumor
heterogeneity is a major factor in the analysis of Hh target
gene expression by real-time polymerase chain reaction.
For example, we identified activation of the Hh pathway
in prostate cancer more frequently from transurethral
resection of the prostate specimens than from prostatec-
tomy specimens [88]. Third, different standards have
been used to define Hh signaling activation. Some studies
have used elevated expression of Gli1 as a read-out of Hh
signaling activation [50], whereas others have assessed
expression of several Hh target genes, such as Gli1,
PTCH1, sFRP1 and HIP [82,83,85,90,95]. Similarly,

though most studies have used multiple approaches, some
have only involved immunohistochemistry to detect Hh
signaling activation [96]. Therefore, it is imperative to
establish a unified standard for detecting Hh signaling
activation in human cancer. As the research in this area
progresses, we will gain a clearer picture about Hh
signaling activation in human cancers. Table 2 provides a
summary of current data on Hh signaling activation in
human cancers.

Small Molecule Modulators of Hh Signaling

Cyclopamine
Cyclopamine, a plant-derived steroidal alkaloid, binds
directly to the transmembrane helices of SMO and inhibits
Hh signaling [97]. The discovery of small molecule
antagonists of SMO such as cyclopamine has opened up
exciting new prospects for molecularly targeted therapy
for and prevention of human cancers associated with Hh
signaling.

Oral cyclopamine can block the growth of UV-induced
BCCs in PTCH1+/− mice by 50%, perhaps by increasing
Fas-induced apoptosis [79]. Furthermore, cyclopamine
treatment in this mouse model prevents the formation of
additional microscopic BCCs, implying a potential use of
cyclopamine in BCC prevention. Cyclopamine adminis-
tration reduced BCCs, but not SCCs or fibrosarcomas, in
these mice, highlighting the specificity of cyclopamine
for the Hh pathway [79]. Using murine BCC cell lines
derived from this mouse model, cyclopamine is shown to
inhibit cell proliferation, possibly through down-regulation
of growth factor receptor PDGFR. Similarly, cyclopamine
is effective in reducing medulloblastoma development in
PTCH1+/− mice  as well as tumor growth of many cancer
cell lines in nu/nu mice [50,85,90,98,99].

Synthetic SMO antagonists
Other synthetic SMO antagonists, such as CUR61414
from Curis/Genentech, have also been found to be effective
in reducing BCCs in PTCH1+/− mice. Using an ex vivo
model of BCC, CUR61414 caused the regression of UV-
induced basaltic lesions in punch biopsies taken from
PTCH1+/− mice [100]. Since that study, a topical formula-
tion of this compound has been tested against sporadic
BCCs in a phase I clinical trial. However, for unknown
reasons, the compound did not appear to affect Hh target
gene expression in this clinical trial. Additionally, several
other synthetic compounds differing structurally from
cyclopamine have been identified for their ability to bind
directly to SMO [101,102].
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Other Hh signaling modulators
A few small molecule inhibitors for Gli1 functions are
identified through chemical library screening. Two such
inhibitors act in the nucleus to block Gli function, and one
of them interferes with Gli1 DNA binding in living cells
[103]. Importantly, the discovered compounds efficiently
inhibited in vitro tumor cell proliferation in a Gli-dependent
manner and successfully blocked cell growth in an in
vivo xenograft model using human prostate cancer
cells harboring downstream activation of the Hh pathway
[103]. The growth of these tumors can not be inhibited
by cyclopamine or its analogs, raising the possibility that
these Hh antagonists may have broad uses in cancer
therapeutics. Clinical application of these compounds,
however, awaits additional preclinical studies in defined
tumor models.

Recent studies indicate that vitamin D3, the secretion
of which can be facilitated by PTCH1, can inhibit SMO
signaling through direct binding to SMO. This finding
raises the possibility that BCCs may be treated with nutri-
tional supplements [104].

Since abnormal expression of Shh is very common in
several human cancer types, neutralizing antibodies for

Table 2 Summary of hedgehog (Hh) signaling activation in human cancers

Tumor type

Skin cancers

Brain tumors

Prostate cancer

Endometrial carcinomas
Breast cancer
Upper GI tract

Pancreatic cancer
Liver cancer

Lymphomas
Multiple myelomas

Tumor subtype

Basal cell
carcinomas (BCC)

Melanomas
Medulloblastomas

Gliomas
−

−
−
Esophageal cancer
Gastric cancer
PDA
Hepatocellular

carcinoma
B-cell lymphoma
−

Hh signaling activation
frequency

Almost all BCCs

11 out of 11
30%−100%

35%−80%
70% in advanced/

metastatic tumor
Around 30%
10%−100%
Over 50%
Over 50%
Over 80%
Over 60%

Over 60%
Most

Abnormality in
Hh pathway

Patched homolog 1
(PTCH1) down,
smoothened (SMO) up
or suppressor of Fused
[Su(Fu)] down

Sonic hedgehog (Shh) up
PTCH1 down, Su(Fu)

down,  or REN loss
Shh up
Shh up

Shh up
PTCH1 down or Shh up
Shh or Gli1 up
Shh up
Shh up
Shh up

Eμ-myc lymphoma model
Stem cell

References

[59,60,66,73,75−77,
120]

[50]
[121−124]

[91,125]
[88−90]

[126]
[96,127−129]
[80,84,130]
[80,82,131−133]
[80,85,86,134−142]
[143−147]

[92,148]
[149]

Shh have demonstrated effectiveness in reducing cell
proliferation in cancer cells with activated Hh signaling
[83]. Future clinical application of Shh neutralizing
antibodies will require additional preclinical studies.

In addition, several synthetic SMO agonists are available
for functional studies of Hh signaling in human cancer
[101]. With appropriate optimization, it is possible that
these Hh agonists may be used to treat human conditions
with reduced Hh signaling, such as holoprosencephaly.
Table 3 shows currently known small molecule inhibitors
of Hh signaling.

Summary

In summary, rapid advances in our understanding of Hh
signaling have provided great opportunities for develop-
ing novel therapeutic strategies for human conditions with
altered Hh signaling, particularly cancer. Optimized use
of Hh signaling antagonists will make these therapies
feasible. The challenges for therapeutic application of Hh
signaling inhibitors include identification of the right tumors
for therapeutic application; reliable and reproducible animal
models for testing these compounds; and optimization of
drug dosages to minimize the side effects.
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Names EC50 (nM) In vitro/in vivo studies References

Cyclopamine 300 In vivo and in vitro studies Selected references
[79,98,99]

KAAD-cyclopamine 20 In vitro cultured cells Selected references
[82,83,97]

Jervine 500 In vitro and in cultured embryos [150−152]
CUR-61414 200 In vitro, animal studies and human clinical trial phase I [101]
Sant-1 20 In vitro studies [102]
Sant-2 30 In vitro studies [102]
Sant-3 100 In vitro studies [102]
Sant-4 200 In vitro studies [102]
Compound 5 <100 In vitro studies [153]
Compound Z <1 In vitro studies [153]
2-amino-thiazole 30 In vitro studies [94]
Gant-58 5×109 In vitro and in vivo studies [103]
Gant-61 5×109 In vitro and in vivo studies [94]
Vitamin D3 1×1011 In vitro studies [104]

Table 3 Summary of hedgehog (Hh) signaling inhibitors
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